Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period.
نویسندگان
چکیده
Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.
منابع مشابه
Intensity of African Humid Periods Estimated from Saharan Dust Fluxes
North Africa experienced dramatic changes in hydrology and vegetation during the late Quaternary driven by insolation-induced shifts of the tropical rain belt and further modulated by millennial-scale droughts and vegetation-climate feedbacks. While most past proxy and modelling studies concentrated on the temporal and spatial dynamics of the last African humid period, little is known about the...
متن کاملAfrican humid periods triggered the reactivation of a large river system in Western Sahara
The Sahara experienced several humid episodes during the late Quaternary, associated with the development of vast fluvial networks and enhanced freshwater delivery to the surrounding ocean margins. In particular, marine sediment records off Western Sahara indicate deposition of river-borne material at those times, implying sustained fluvial discharges along the West African margin. Today, howev...
متن کاملOcean temperature forcing by aerosols across the Atlantic tropical cyclone development region
[1] Recent work has shown a statistical climatological link between African dust outbreaks and North Atlantic tropical cyclone frequency and intensity. However, a definite causal link between year-to-year changes in African dust and Atlantic tropical cyclones has yet to be proven. Here we show that variability in Atlantic dust cover is linked to changes in tropical cyclone activity through the ...
متن کاملAir Pollution Control from Rice Shellers - A Case Study
A Rice Sheller is used for obtaining polished white rice from paddy. There are about 3000 Rice Shellers in Punjab and 50000 in India. During the process of shelling lot of dust is emitted from different unit operations like paddy silo, paddy shaker, bucket elevators, huskers, paddy separator etc. These dust emissions have adverse effect on the health of the workers and the wear and tear of the ...
متن کاملHolocene climate instability during the termination of the African Humid Period
[1] The termination of the Holocene African Humid Period ( 9 to 6 kyr BP) is simulated with a threedimensional global coupled climate model that resolves synoptic variability associated with weather patterns. In the simulation, the potential for ‘‘green’’ and ‘‘desert’’ Sahara states becomes equal between 7.5 and 5.5 thousand years ago, causing the climate system to fluctuate between these stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 24 شماره
صفحات -
تاریخ انتشار 2017